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Abstract--The three-dimensional linear stability of the steady mixed-convective flow in a (moderately) 
wide gap annulus between two concentric horizontal cylinders with a heated rotating inner cylinder is 
studied numerically. The critical stability curves in the parameter plane of (Re 2, Gr) are determined. It is 
found that the effect of heating of inner cylinder postpones the formation of Taylor vortices when the 
rotation effect dominates the buoyancy effect. When the effect of buoyancy predominates over the effect 
of centrifugal force, the rotation of inner cylinder also stabilises the two-dimensional basic flow. When 
both rotation and buoyancy effects are important, the basic flow becomes unstable with respect to oscillatory 
disturbances. The results are in qualitative agreement with those of the three-dimensional numerical 

computations. 

1. INTRODUCTION 

Mixed convection in an annulus between heated 
rotating concentric cylinders has attracted con- 
siderable attention because of its wide technological 
applications such as cooling of rotating machinery or 
chemical vapour deposition processes. In the mixed 
convection system with a fixed radius ratio r/, the flow 
and heat transfer characteristics are determined by the 
buoyancy and centrifugal force which are charac- 
terised by the Grashof number and (rotational) Reyn- 
olds number, respectively. Of particular relevance is 
the ratio Gr/Re 2, denoted by 7, which indicates the 
relative importance of the buoyancy and rotational 
effects. 

From the late 1950s, a number of studies have been 
performed for heated rotating vertical annulus. While 
earlier works [1, 2] concentrated on the overall flow 
patterns and heat transfer rates, later studies focused 
on the stability [3-.5] of the base flow which is steady, 
axisymmetric and independent of the axial coordinate, 
and on the subseq aent development of the secondary 
flow and bifurcation phenomena [6, 7]. Recent stab- 
ility analysis [5] shows that the destabilizing mode of 
base flow changes from axisymmetric mode through 
various spiral modes to axisymmetry mode as the 
Grashof number increases, and that the buoyancy has 
a stabilising effect except for large values of Prandtl 
number. 

Several experimental investigations [8-10] of the 
mixed convection in a concentric horizontal annulus 
were reported, dealing with the overall heat transfer, 

t Author to whom correspondence should be addressed. 

but the problem received much less attention despite 
of its practical importance. Some investigators [11-13] 
conducted two-dimensional numerical experiments to 
study the flow patterns and heat transfer charac- 
teristics of the mixed convection in concentric or 
eccentric horizontal annulus with a heated rotating 
inner cylinder and stationary outer one. It has been 
observed [9] that the effect of natural convection 
decreases with the increase of the Reynolds number 
before the onset of the Taylor vortex motion. The 
results of two-dimensional computations also show 
that the overall heat transfer as well as the peak value 
of local heat transfer is reduced with increased 
rotation. On the other hand, once the Reynolds num- 
ber is increased beyond the critical value and the 
Taylor vortex motion sets in, the overall heat transfer 
is observed to increase with the Reynolds number 
[8-10]. It is also found [10] that the free convection 
postpones the onset of Taylor vortex motion. 

For the horizontal configuration, interaction of 
buoyancy and centrifugal effects is expected to pro- 
duce fully three-dimensional flows when the cen- 
trifugal force is strong enough to trigger the formation 
of Taylor vortices. Recently, Yang and Farouk [14] 
performed a three-dimensional numerical analysis of 
flows and heat transfer in a horizontal concentric 
annulus. However, no investigation of the instability 
of two-dimensional mixed convective flows leading to 
three-dimensional flows has been carried out. Very 
recently, the present authors [15] examined the linear 
stability of the two-dimensional natural convection of 
air (Pr = 0.71) in a horizontal annulus of medium- 
sized gap (0.5 < r /<  0.8333) against three-dimen- 
sional disturbances and obtained the critical Rayleigh 
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NOMENCLATURE 

gravitational acceleration 
Grashof number, gfl( T i -  To) L 3 /v 2 
dimensionless axial wave number 
unit vector in axial direction 
gap width of annulus, Ro-R~ 
Prandtl number, v/ct 
representative variable for basic flow 
representative variable for disturbance 
real part of complex number 
rotational Reynolds number, ~iRiL/v 
radii of the inner and outer cylinders, 
respectively 
dimensionless radial coordinate 
complex growth rate, s = sr + isi 
dimensionless time 
characteristic velocity, R~f~i 
velocity for basic flow, V = (Vr, V~, O) 
velocity, v = (vr, v~, v_.) 
dimensionless axial coordinate. 

7 

q 
0 
0 
2 
V 

4, 
qJ 

12 

co 

t2i 

Greek symbols 
thermal diffusivity 

fl thermal expansion coefficient 

ratio of buoyancy to centrifugal force, 
Gr/Re 2 
ratio of radii, Ri/Ro 
temperature for basic flow 
temperature 
axial wavelength 
kinematic viscosity 
azimuthal coordinate 
stream function for basic flow 
vector potential, qt = (~,, ~,~, ~:) 
vorticity for basic flow 
vorticity, co = (co, co~, co..) 
angular velocity of inner cylinder. 

Subscripts 
c critical value 
i, o inner and outer cylinders, respectively 
r, 4,, z radial, azimuthal and axial 

coordinates 
s, p two-dimensional steady basic flow and 

perturbation, respectively. 

Superscript 
* complex conjugate. 

numbers above which the basic flow is unstable. It 
was suggested that the instability is mainly caused by 
the buoyancy effects. It was found that the natural 
convective flow is stable for q < 0.51. 

The present paper considers the linear stability of 
two-dimensional mixed-convective flow in a hori- 
zontal annulus of (moderately) wide gap width 
(q = 0.6 or 0.3846) against three-dimensional dis- 
turbances. The inner cylinder is rotating at a constant 
angular velocity while the outer cylinder is stationary. 
Both inner and outer cylinders are kept isothermal, 
the inner cylinder being hotter. The critical Grashof 
number as a function of the Reynolds number is 
obtained by integrating numerically the linearized dis- 
turbance equations under the suitably chosen initial 
conditions. The instability mechanism is discussed by 
examining the features of the critical disturbances. 
The two-dimensional basic mixed-convective flow is 
also obtained numerically. Computations are carried 
out in the range of 0 ~< Gr <~ 8500 and 0 ~< Re <~ 170 
for a fluid of Prandtl number 0.71 (air). 

For  q = 0.6 (moderately wide gap annulus), the 
natural convection in the horizontal annulus is shown 
to be unstable for Gr > 2810 [15]. It is found that 
effects of rotation stabilise the buoyancy-dominated 
mixed convection (7 > 0.33) and that the principle of  
exchange of  stabilities holds. For  rotation-dominated 
flow (7 < 0.16), the critical mode is a stationary three- 
dimensional one and the critical Reynolds number 

increases with Grashof number. In the range 
0.16 < 7 < 0.33, in which both rotation and buoyancy 
effects are important, the most unstable mode is found 
to be oscillatory, i.e. the principle of  exchange of  stab- 
ilities is upset by the competition between two desta- 
bilizing mechanisms, buoyancy and centrifugal insta- 
bilities. 

For q = 0.3846 (wide gap annulus), similar insta- 
bility phenomena are observed, although the insta- 
bility mainly due to buoyancy effects does not occur 
in the range investigated (Gr <~ 8500). For  rotation- 
dominated flow (7 < 0.18) the critical mode is station- 
ary ; in the range 0.18 < 7 < 0.31 the basic two-dimen- 
sional mixed convective flow becomes unstable to an 
oscillatory mode; and for 7 > 0.31 the basic flow is 
stable. 

2. MATHEMATICAL FORMULATION AND 
COMPUTATIONAL METHOD 

Laminar mixed-convective flow in an infinite hori- 
zontal annulus between two concentric circular cyl- 
inders with inner and outer radii Ri and Ro is 
considered. Figure l shows the geometrical model and 
the cylindrical coordinate system (r, 4,, z). The inner 
and outer cylinder surfaces are held at uniform tem- 
peratures T~ and To (Ti > To), respectively. The inner 
cylinder is rotating counterclockwise at a constant 
angular speed ~i. Adopting the Boussinesq approxi- 
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Fig. 1. Flow geometry and coordinates system. 

mat ion and introducing the vector potential  q¢ such 
that  : 

v=V×q, ,  (11 

the dimensionless governing equations in the vor- 
t ici ty-vector potential  formulat ion [1 6] are written as : 

~m 1 2 Gr 
0 t  + (v" V)to = (,o" V)v + Re V to + ~ e  z V × b, (2) 

V2~k = - t o ,  (3) 

0o 
~3~ + (v" V) 0 = V20, (4) 

where to is the vorticity, v the velocity, b = (0 cos q~, 
- 0  sin ~b, 0) the buoyancy force, and 0 the tempera- 
ture. In this formulation,  we obtain the solenoidal 
velocity field automatically,  accordingly the discrete 
mass conservation at each time level is satisfied ident- 
ically, and explicit appearance of  the pressure is 
avoided. Equations (2)-(4) have been put  into dimen- 
sionless form by taking L ( =  R o - R i ) ,  V ( =  Ri~i), 
L~ V as characteristic length, velocity and time, respec- 
tively. Dimensionless temperature 0 is defined by 
O= ( T - T o ) / ( T i - T o ) .  The non-dimensional par-  
ameters Gr, Re and Pr are defined by : 

Gr = gfl( Ti -- To)L 3 /v 2, (5) 

Re = VL/v, (6) 

e r  = v/o~, (7) 

where g is the gravi tat ional  acceleration, fl the thermal 
expansion coefficient, ct the thermal diffusivity and v 
the kinematic viscosity. 

The boundary  conditions on rigid boundaries are 
expressed as [17] : 

V~ ---- V~ = 0 ] 

~(rO,llr)/Or = ~/, = I]/z = 0 / at r = ri, ro, 

co~ = 0 ~% = - , ~ v . / O r  o~ = Ov,/Or 

(8) 

v o =  1 and 0 = 1  at r = r i ,  (9) 

v ~ = 0  and 0 = 0  at  r = r o ,  (10) 

where ri and ro are dimensionless radii  of  inner and 
outer cylinders. 

2.1. Two-dimensional basic f low equations 
For  two-dimensional  flow, the above equations (2)-  

(4) degenerate into the conventional  vor t ic i ty-s t ream 
function formulation,  by letting the z component  of  
velocity equal to zero and all the variables be inde- 
pendent  of  z : 

v = V(r, ~b, t) = (V .  V~,0) 

to = f~(r, ~b, t )k 

= ~ ( r ,  q~, t ) k  

0 = 19 (r, ~b, t), 

where k denotes the unit  vector along z-axis. 
The dimensionless governing equations for two- 

dimensional basic flow are given as 

0f~ ~ 0~ 
0 t  +vr +V, r0~ 

Rel 2 /019 . r-~00 q~), (1 = V f ~ -  ? ~ - r  sm ~b + cos 1) 

V zq'  = - f L  (12) 

~qJ 0~g 
V r = r 0 ~  V ~ = - ~ - r ,  (13) 

gO 019 + 0 0  I 
O~- + Vr-~--r V~ rc~dp- R e P r V 2 0 ,  (14/ 

where y = Gr/Re 2 denotes the ratio of  buoyancy to 
centrifugal force. 

Boundary conditions on the cylinder surfaces are 
written as follows : 

02~ 1 
~ = ~ i  f~ I - -  ® =  1 

~ r  2 r i 

~2kIJ 
q ~ = 0  f ~ = - - -  O = 0  at  

0r z 

at  r = ri, 

(15) 

r = ro, (16) 

w h e r e  kid i is a constant  to be determined by requiring 
that  the pressure be single-valued in the annulus [18]. 

2.2. Linear stability formulation 
In order to investigate the stability of  the two- 

dimensional steady flow against three-dimensional 
small disturbances, we apply the s tandard methods of  
linear stability theory [19] following the procedures 
which Choi and Kim [15] used for the stability analysis 
of natural  convection in a horizontal  annulus. 

All  the variables of perturbed flow are written as the 
sum of the steady basic solution and the disturbances : 

q(r, O, z, t) = Qs(r, 49) +~[qp( r ,  49, t) exp (ikz)], (17) 

where k is the dimensionless axial wave number.  
Inserting expression (17) into equations (2)-(4), sub- 
tracting the basic steady parts  and discarding O(e 2) 
and higher order terms, we obtain the following sys- 
tem of linear equations for the disturbances (dropping 
the subscripts s and p) : 
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(309, (309r (309~ 
+ v ~ T ; + G  Ot r(3dp 

(3V r (3V r 
= ('Or ~-r "~ 09* ~ "~ i k O v ,  

1 ( 2 09, 2(309,~ 
+ Re 7.09, r2 r 2 (3(9J + iTkOsin¢' 

(309, 609, (309, V+09, 

= 09, ~ (3 G + 09 ' v" 
+ coo ~ ¢  r +ikf~v, 

1 / 2 (3), 2 (3(.Or\ 
+ R e [  v ~ * -  7 + 7 ~ ) + i r k O c o s  ok, 

(309~ (3f~ (309_ (3f~ (309~ 
"~- l)r ~rr ~- Vr " "~- ikf~v~ 

1 2 [/(30 (30 
+ Ree V,09= - 7 [ ~ r  sin ¢ + r ~  cos q~}, 

where q denotes the most unstable (least stable) mode 
of the eigenvalue problem resulting from the normal 
mode analysis of  equations (18a)-(21). If  s~ > 0 (or 
s~ < 0) at neutral stability (Sr = 0), the critical mode 
propagates  in the negative (or positive) z-direction. It 
can be easily shown that  if (v,  v,, v ,  ~k~, ~%, ¢~, 09, 09,, 

( lSa) co, 0) = (G, ~,, G, ~r, ~ , ,  t~:, &,, &,, Cb=,0) exp (st) 
is a solution of the linearized disturbance equations 
(18a)-(21) satisfying boundary  conditions (22), then 
(v_ v,, v z, ~ ,  G ,  ~z, 09- 09,, 09- 0 ) =  (e*, ~,  -~* 
- $ * ,  --~b}, ~k*, --(3* --o5~, eS*, 0") exp (s't) is also a 
solution. Here, quantities with tilde are complex- 
valued functions of r and qS, and the complex con- 
jugate is denoted by the asterisk notation. This implies 

(18b) that  when the critical disturbances are t ime-dependent 
(sa :# 0) there is no preferred propagat ion direction. 
Also, standing waves may exist. In the numerical 
experiments, it has been found that  the disturbances 
consist of  both components  moving in +z-direct ion 
and in - z -d i r ec t ion ,  when the critical mode is time- 

(1 8c) dependent.  

V2,G G 2 (3~, 
r 2 r 2 &b - - 0 9 "  (19a) 

2 (3if, 
V2*~*- ~2r ~ q r 2 (3dp - - 09.' (19b) 

(19c) 

(20a) 

V2,G = -09_, 

Vr = r ~  -- ik~k~, 

aG 
v~ = - ~ -  +ik~,, ,  (20b) 

(3(rG) (3¢, 
G -  r(3r r&[~' (20c) 

O0 (30 (30 (30 (30 1 
& +v ,~r  + Vr~r +v,  ~ + V, r&~p - Reer  Vz*O' 

(21) 

where 

(32 (3 1 (32 
. . . . .  k 2 V2* - &2 + rTr + r 2 (3¢2 

The boundary conditions are homogeneous and 
given as : 

v , = v , = v ~ = O = O  } 

(3(rtll,)/& = ~ ,  = q/. = 0 at r = ri, ro. 

09r = 0 09, = - & / &  09~ = & , / &  

(22) 

Since the above linearized disturbance equations 
are homogeneous and do not  depend on t explicitly, 
the solution will eventually show the exponential  
behaviour in time : 

qp( r , ¢ , t )~q ( r , ¢ ) e  ~t S=Sr+iSi t>>l, (23) 

2.3. Computational procedures 
The basic flow and its stability are determined using 

the same numerical algori thm as in Choi and Kim 
[15]. Fo r  details, refer to ref. [15] and the references 
cited therein. 

In the boundary conditions (15) for the basic flow, 
the constant  kI'/i cannot  be given beforehand, and is 
determined from the condit ion of  the single-valued- 
ness of  pressure on the wall [18]. The basic flow is 
assumed to reach a steady state when the difference 
between the results of  consecutive time steps becomes 
less than 10 -5 at  every mesh point. In the whole range 
of  parameters  investigated (Gr < 8500, Re < 170), we 
were able to obtain the basic flow solutions which 
satisfy the steady-state criterion. 

The linearized disturbance equations (18a)-(21) are 
integrated until the asymptotic  exponential  behaviour 
is established. Several complex-valued initial con- 
ditions which satisfy the no-slip and isothermal con- 
ditions on the cylinder walls are chosen. Final  results 
are independent of the initial conditions. Fo r  a given 
axial wave number k and Grashof  number  Gr, the 
growth rate Sr and oscillating frequency si are deter- 
mined from the time history of  dependent  variables 
which are, in general, complex-valued at  several points 
in the domain.  It is noticeable that  both growth rate 
and oscillating frequency approach specific values 
after a sufficiently long time regardless of choice of 
the location (Fig. 2). As discussed in the previous 
subsection, the present algori thm can give only the 
magnitude of  s~. The transit ion Grashof  number  at 
which the growth rate sr becomes zero is found by 
the method of false position. Usually four or five 
iterations are needed to obtain a transit ion Grashof  
number  with the accuracy of at  least three significant 
digits. 

Approximate  values of  the critical Grasho f  number  
Gro and the critical wave number  kc for a given Reyn- 
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Fig. 3. Neutral stability curves for r/= 0.6: (a) Re = 20; (b) Re = 74; (c) Re = 90; (d) Re = 100; (e) 
Re = 140. S and U indicate the stable and unstable regions, respectively. 

ment. We have used the values of the axial wave num- 
bers k presented in the references. 

The computational procedures adopted in the 
present study can isolate only the most unstable (least 
stable) mode and require a large amount of time when 
two or more modes with nearly the same growth rate 
and different frequencies compete. 

3.1. Neutral stability curves 
We depict typical neutral stability curves for differ- 

ent values of Re for a moderately wide gap annulus 
(r/= 0.6). Figure 3(a) shows the neutral stability 
curves of Gr vs k at Re = 20. The critical Grashof 
number Grc is 3558.4 and the critical wave number ko 
is 3.443. The most unstable mode is stationary. Figure 
4(a) displays the stream function and temperature 
distribution for the basic flow and distributions of the 
axial velocity and temperature disturbances. As seen 
in the figure, the disturbances are localized in a narrow 
region of upper-left part of the annulus where unstable 
density stratification of the basic flow is most pro- 
nounced. This implies that the instability is mainly 
caused by the buoyancy effects. This type of dis- 
turbances is designated by 'buoyancy-dominated' 
mode. As the Reynolds number decreases, the critical 
Grashof number decreases linearly towards 2810, the 
critical Grashof number for the natural convection 
[15]. The tendency that the increase of rotation post- 
pones the instability due to buoyancy effects may be 
explained by considering that the peak value of local 
heat transfer rate (hence, the maximum adverse tem- 
perature gradient) decreases with increasing the 
rotational Reynolds number [12]. 

When the Reynolds number is increased above a 
critical value Rec -~ 71.4, which is the critical Reynolds 
number for the isothermal Taylor-Couette flow, 
a second branch appears. Figure 3(b) illustrates the 
neutral stability curves consisting of two branches at 
Re = 74. The basic flow is unstable for Gr < Grl 
(-~439) or Gr > Gr2 (25143). The multiple-valued- 
ness of the critical Grashof number would imply the 
restabilization of the two-dimensional mixed con- 
vection with the increase of Gr. At a sufficiently low 
Grashof number (Gr < Gr O, instability to a three- 
dimensional disturbance is encountered first. Increas- 
ing Gr above Grl, the two-dimensional basic flow 
would be restabilized and this flow will experience a 
second instability to a three-dimensional disturbance 
at a still higher Grashof number Gr2. Neutral dis- 
turbances associated with the upper branch are of the 
same character as those associated with the neutral 
curve at Re = 20 [Fig. 3(a)], although the region of 
energetic disturbances is somewhat widened. On the 
other hand, stationary neutral disturbances associated 
with the lower branch, which are depicted in Fig. 
4(b), are of entirely different character. Expanding the 
disturbance, say O(r, dp), into Fourier series : 

O(r, q~) = 00 (r) ÷ ~ {0,~ (r) cos n~b + 0~ (r) sin n~b}, 
n = l  

we find only the modes n = 0 and n = 1 are dominant 
and other modes are negligible. The neutral dis- 
turbances associated with the lower branch have a 
restricted number of significant non-axisymmetric 
modes (usually, n ~< 2). This type of disturbance will 
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(4 O-4 
Fig. 4. Flow a.nd temperature patterns for basic flows and disturbances for q = 0.6 : (a) Gr = 3620, Re = 20, 

k = 3.40; (b) Gr = 444, Re = 14, k = 3.22. 

be designated as “rotation-dominated’ mode. The 
critical Reynolds number for rotation-dominated 
mode decreases linearly towards 71.4 as Gr decreases. 
It is interesting to note that the most unstable mode 
of the basic two-dimensional mixed-convective flow is 
always three-dimensional, albeit that the effects of 
buoyancy on the b,asic flow are graphically invisible 
[Fig. 4(b)]. Numerical computation shows that the 
amplitude of the n := 1 spiral mode of rotation-domi- 
nated disturbance :IS as large as about one-tenth of 
that of axisymmetric mode (n = 0) even at Gr = 10. 

Figure 3(c) plots the neutral stability curves at 
Re = 90. The flow is unstable for Gr < Gr, (- 1191) 
Gr, (-1390) < G,r< Gr, (~2701) or Gr > Gr, 
(N 55 17). In the figure, in addition to upper and lower 
open-loop branches with which buoyancy-dominated 
and rotation-dominated modes are associated, respec- 
tively, a closed-loop branch appears. The neutral dis- 
turbances associated with the closed-loop branch are 
oscillatory. In Fig. :5, the time-dependent neutral tem- 
perature disturbance is shown at several instants dur- 
ing a period of oscillation. The region in which intense 
disturbances are observed is rather wide and swings 
forwards and backwards in the upper part of the annu- 
lus. We designate this type of disturbance as ‘mixed- 
convective’ mode. The closed-loop branch inside 
which the flow is unstable degenerates into a point at 
Re = 77.8 (Gr = 1549,k = 2.947) and minimum 
value of Gr of th’e closed-loop coincides with the 
maximum value of Gr of the lower open-loop at 
Re = 93 (Gr = 1404). As the Reynolds number is 
increased further, the closed-loop branch and the 
lower open-loop branch coalesce, leading to a lower 
open-loop branch [Fig. 3(d)]. The neutral modes 
associated with thi:s branch consist of the oscillating 
mixed-convective mode for 1.72 < k < 4.85 and the 

rotation-dominated mode for k < 1.72 or k > 4.85. 
Still increasing Re, the critical modes associated 
with the lower open-loop branch become solely oscil- 
latory [Fig. 3(e)] in the range of k investigated 
(1.2 < k < 6.0). With the increase of Re, the 
maximum value of the Grashof number (Gr,) of the 
lower branch approaches the minimum Grashof num- 
ber (Gr,) of the upper branch, and, at Re N 168, Gr, 
and Gr, coincide (Gr, = Gr, N 8084.5). 

For the wide gap annulus (q = 0.3846), neutral 
stability curves show the same features as those for 
q = 0.6, except that the upper branches with which 
buoyancy-dominated modes are associated are 
absent. For Re < 68.4, the basic two-dimensional 
mixed-convective flow is stable ; for 68.4 < Re < 82.1, 
an open-loop branch below which the flow is unstable 
appears ; for 82.1 < Re < 98, a closed-loop branch 
inside which the flow is unstable appears ; and, for 
Re > 98, the closed-loop branch and the lower open- 
loop branch coalesce. Figure 6 depicts the neutral 
stability curves at Re = 90. 

3.2. Critical stability results 
Figure 7 displays the critical stability diagrams for 

q = 0.6. In Fig. 7(a), the critical values of the Grashof 
number are plotted as a function of Re*. The stable 
regime is bounded by three marginal curves, des- 
ignated by C,, C, and CR, along which the critical 
modes are identifiable as buoyancy-dominated, 
mixed-convective and rotation-dominated modes, 
respectively. Along C, (rotation-dominated stability 
boundary) the critical Reynolds number for Gr > 0 
(mixed convection) is larger than that for Gr = 0 (iso- 
thermal Taylor-Couette flow) and increases mon- 
otonically with Cr. It can be, thus, concluded that the 
free convection in the horizontal annulus delays the 
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Fig. 5. Distributions of disturbance temperature at several instants during a period of oscillation for 
~/= 0.6, Re = 90 and Gr = 2700: (a) t = h, (0~,, 0m,x) = (0.00, 3.33); (b) t t+T/8 ,  (--0.43, 4.01); (C) 
h+2T/8 ,  (-0.77, 2.63); (d) t~+3T/8, (-1.32, 0.30); (e) t ,+4T/8,  (-3.33, 0.00); (f) h+5T/8 ,  (-4.01, 
0.43); (g) t~ + 6T/8, (--2.62, 0.77); (h) t~ +7T/8, (--0.29, 1.33). T = 2n/sl ~-- 59.84. Dotted lines represent 

negative disturbance isotherms. 
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Fig. 6. Neutral stability curves for r/= 0.3846 and Re = 90. 
S and Uindicate the stable and unstable regions, respectively. 

formation of Taylor vortices, which is in accordance 
with the experimental observation [10]. Rotat ion 
effects also stabilize the convective flow, since the criti- 
cal Grashof  number  on buoyancy-dominated stability 
boundary (CB) increases with the Reynolds number.  
On the curves CB and CR the critical disturbances are 
stationary (si = 0), whereas on CM the critical states 
are time-dependent (S i ~ 0).  At the point A ~ (932, 
1404), the stationary rotat ion-dominated branch CR 
and the oscillatory mixed-convective branch Cr~ inter- 

sect and the point B ~ (1682, 8084.5) represents the 
intersection of the stationary buoyancy-dominated 
branch CB with CM. At these points stationary and 
oscillatory states may coexist. Bifurcation phenomena 
for which the most unstable mode switches from a 
stationary mode to a time-dependent mode are not  
uncommon,  when two or more effects characterize 
the stability of the flow : to cite a few, Taylor -Dean 
problem [22], rotating curved channel flow [23] and 
electrohydrodynamic thermal instability flow [24], etc. 

Figure 7(b) shows the critical axial wave number  kc 
as a function of R e  2. For  rotat ion-dominated modes, 
instability wave number  kc (wavelength 2c) increases 
(decreases) gradually from kc = 3.145 (2c -~ 2.0) for 
isothermal Taylor vortex flow to kc ~ 4.3(2c = 1.5) as 
the buoyancy effect increases. On the other hand, for 
heated rotating vertical annulus, the opposite trend 
has been observed [5] : wavelengths of successive heli- 
cal modes grow continuously and then suddenly 
shrink when another spiral mode of higher azimuthal 
wave number  evolves. For  buoyancy-dominated 
modes, critical axial wave numbers rapidly approach 
a nearly constant  value of kc -~ 3.77 as R e  2 increases. 
At points A and B, the critical wave number  changes 
discontinuously. 

In Fig. 7(c), the frequency si of  the critical neutral 
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Fig. 7. Critical stability diagrams as functions of Re 2 for 
r /= 0.6 : (a) critical stability curves ; (b) critical wave num- 
bers; (c) oscillation frequencies. CR denotes the rotation- 
dominated branch, Ca the buoyancy-dominated branch and 
CM the mixed-convective branch. Points A and B represent 
the bifurcation points at which stationary and oscillatory 
states may coexist and C the point at which two different 

oscillatory states coexist. 

disturbance associated with the curve CM is plotted as 
a function of  Re 2. It is observed that there exists a 
bifurcation point C ~ (1152, 3960) at which two time- 
dependent modes of  different frequencies coexist. At 
the bifurcation point  C, the wave number of  the criti- 
cal mode seems to change discontinuously. Since dis- 
continuity is very weak, however, the evaluation of  
the precise value ofLhe jump by the present method is 
extremely difficult and not attempted. Figure 8 shows 
temporal  variations of  disturbance temperatures at 
points near the bifurcation point C. As shown in the 
figure, the beat of  two modes continues for a long time 
before the predominant  mode settles down ultimately. 

Figure 9 displays the stability boundaries in 
(Re 2, Gr) plane and the corresponding critical axial 
wave number and oscillating frequency as functions 
of  Re 2 for the radius ratio of  r / =  0.3846. The overall 
features of  these curves closely resemble those of  Fig. 
7, except that the critical curve for buoyancy-domi- 

3 
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, o o  i  oo(b) oo 
Fig. 8. Time history of disturbance temperatures at points 
near the bifurcation point C: (a) Gr= 3732, Re = 110, 
k=3 .15 ;  (b) Gr=4268, R e =  120, k=3.40.  Estimated 
oscillation frequencies are s~ = 0.117 for (a) and si = 0.295 

for (b). 

nated modes is absent. The absence of  the buoyancy- 
dominated critical modes is not unexpected since the 
two-dimensional natural convective flow is predicted 
to be stable with respect to three-dimensional dis- 
turbances when the gap is wide [15]. At  point 
A ~ (982, 1790), the stationary rotat ion-dominated 
critical mode and the oscillatory mixed-convective 
mode coexist, and point C ~ (1132, 3559) represents 
the bifurcation point at which two different time- 
dependent modes coexist. An appreciable jump  in 
wave number as well as the frequency of  the critical 
disturbances is observed at C. Yang and Farouk [14] 
have conducted the three-dimensional numerical com- 
putations for the mixed convection in an annulus of  
finite axial length (axial length/gap width = 6) for 
r / =  0.3846. They presented the results that at a fixed 
Reynolds number (Re2= 10000), which is sufficient 
to trigger the Taylor vortex in an isothermal annulus, 
the flow is essentially two-dimensional for Gr = 6944, 
whereas the Nusselt number distributions for 
Gr = 138 and 1388 show a wave-like variation in the 
axial direction, suggesting the presence of  Taylor cells. 
They concluded that the critical Reynolds number for 
the onset of  the Taylor cells would be higher than 100 
at Gr = 6944. Calculation for a fixed Grashof  number 
(Gr = 2777) with varying Reynolds number suggested 
that the onset of  rotational instability occurs some- 
where between Re = 80 and 130, but determination 
of  the precise value of  the critical Reynolds number 
was not  attempted. The present analysis gives Rec = 
153 at Gr = 6944 and Rec = 96 at Gr = 2777, indi- 
cating that the results of  the present linear stability 
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Fig. 9, Critical stability diagrams as functions of Re:  for 
q = 0.3846 : (a) critical stability curves--at points indicated 
by open circles computational results by Yang and Farouk 
[14] give the two-dimensional flow and at points indicated 
by filled circles the flow is three-dimensional; (b) critical 

wave numbers ; (c) oscillation frequencies. 

analysis and the three-dimensional numerical analysis, 
taking into account full non-linear effects, are not 
inconsistent. 

From Figs. 7(a) and 9(a), it is inferred that the 
characteristics of the linear instability of the two- 
dimensional mixed convection in a (moderately) wide 
horizontal annulus can be approximately delineated 
by the ratio 7 = Gr/Re2 for fixed values of the radius 
ratio r/. In a moderately wide annulus (~/= 0.6), the 
mode type of the most unstable disturbances changes 
from the stationary rotation-dominated mode 
(7 < 0.16) through the oscillatory mixed-convective 
mode (0.16 < 7 < 0.33) to the stationary buoyancy- 
dominated mode (7 > 0.33) as 7 increases. In a wide 
annulus (q = 0.3846), the onset of hydrodynamic 
instabilities is caused by the stationary rotation-domi- 
nated mode for 7 < 0.18 and by the oscillatory mixed- 
convective mode for 0.18 < 7 < 0.31. At higher values 
of 7, two-dimensional basic flow is stable in the range 
of parameters investigated (Re < 170, Gr < 8500). 
The results of two-dimensional computations 
reported by Fusegi et al. [12] may be legitimated, thus, 
in that the present analysis suggests that the two- 

dimensional mixed convections in the parameter range 
(7 > 1) they investigated may certainly be stable to 
three-dimensional disturbances. On the other hand, a 
part of the results reported by Lee [11, 13] might be 
experimentally not observable, since his study includes 
parameter combinations for which two-dimensional 
flows are unstable to three-dimensional disturbances. 

4. C O N C L U S I O N S  

The three-dimensional linear stability of mixed- 
convective flow in a horizontal concentric annulus 
with a heated rotating inner cylinder is studied 
numerically for a fluid of Prandtl number 0.71 (air). 
Computations are carried out for a moderately wide 
annulus (r/= 0.6) and for a wide annulus 
(q = 0.3846). 

The main results are displayed in Figs. 7 and 9. The 
natural convection is found to postpone the formation 
of Taylor vortices, when the effect of rotation domi- 
nates the effect of buoyancy. This tendency is in agree- 
ment with experimental observation [10]. When the 
effect of buoyant forces predominates over the effect 
of centrifugal forces, the rotation of the inner cylinder 
stabilizes the natural convective flow in the horizontal 
annulus. Since the two-dimensional steady natural 
convection in a wide annulus (q < 0.51) is stable to 
small three-dimensional disturbances [15], it is not 
unexpected that the basic flow in the annulus of 
r /=  0.3846 is stable when the Grashof number is large 
enough compared with the Reynolds number 
(Gr/Re 2 > 0.31). When both the buoyancy effect and 
the rotation effect are important, the basic flow 
becomes unstable with respect to oscillatory dis- 
turbances. 

Stability boundaries are composed of stationary 
and oscillatory branches. At intersection points of 
the branches, the present linear analysis predicts two 
distinct critical modes. However, to clarify which 
modes can be observed in the vicinity of the inter- 
section points, the analysis of non-linear interactions 
is needed [24, 25]. 

No experimental study on the stability of the mixed 
convection in a horizontal annulus has been reported 
so far, in contrast with the stability of the circular 
Couette flow in a heated vertical annulus. It is hoped 
that the present work will stimulate experimental 
investigations. 
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