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Abstract—The three-dimensional linear stability of the steady mixed-convective flow in a (moderately)
wide gap annulus between two concentric horizontal cylinders with a heated rotating inner cylinder is
studied numerically. The critical stability curves in the parameter plane of (Re? Gr) are determined. It is
found that the effect of heating of inner cylinder postpones the formation of Taylor vortices when the
rotation effect dominates the buoyancy effect. When the effect of buoyancy predominates over the effect
of centrifugal force, the rotation of inner cylinder also stabilises the two-dimensional basic flow. When
both rotation and buoyancy effects are important, the basic flow becomes unstable with respect to oscillatory
disturbances. The results are in qualitative agreement with those of the three-dimensional numerical
computations.

1. INTRODUCTION

Mixed convection in an annulus between heated
rotating concentric cylinders has attracted con-
siderable attention because of its wide technological
applications such as cooling of rotating machinery or
chemical vapour deposition processes. In the mixed
convection system with a fixed radius ratio #, the flow
and heat transfer characteristics are determined by the
buoyancy and centrifugal force which are charac-
terised by the Grashof number and (rotational) Reyn-
olds number, respectively. Of particular relevance is
the ratio Gr/Re?, denoted by y, which indicates the
relative importance of the buoyancy and rotational
effects.

From the late 1950s, a number of studies have been
performed for heated rotating vertical annulus. While
earlier works [1, 2] concentrated on the overall flow
patterns and heat transfer rates, later studies focused
on the stability [3-5] of the base flow which is steady,
axisymmetric and independent of the axial coordinate,
and on the subsequent development of the secondary
flow and bifurcation phenomena [6, 7]. Recent stab-
ility analysis [5] shows that the destabilizing mode of
base flow changes from axisymmetric mode through
various spiral modes to axisymmetry mode as the
Grashof number increases, and that the buoyancy has
a stabilising effect except for large values of Prandtl
number.

Several experimental investigations [8—10] of the
mixed convection in a concentric horizontal annulus
were reported, dealing with the overall heat transfer,
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but the problem received much less attention despite
of its practical importance. Some investigators [11-13]
conducted two-dimensional numerical experiments to
study the flow patterns and heat transfer charac-
teristics of the mixed convection in concentric or
eccentric horizontal annulus with a heated rotating
inner cylinder and stationary outer one. It has been
observed [9] that the effect of natural convection
decreases with the increase of the Reynolds number
before the onset of the Taylor vortex motion. The
results of two-dimensional computations also show
that the overall heat transfer as well as the peak value
of local heat transfer is reduced with increased
rotation. On the other hand, once the Reynolds num-
ber is increased beyond the critical value and the
Taylor vortex motion sets in, the overall heat transfer
is observed to increase with the Reynolds number
[8~10]. It is also found [10] that the free convection
postpones the onset of Taylor vortex motion.

For the horizontal configuration, interaction of
buoyancy and centrifugal effects is expected to pro-
duce fully three-dimensional flows when the cen-
trifugal force is strong enough to trigger the formation
of Taylor vortices. Recently, Yang and Farouk [14]
performed a three-dimensional numerical analysis of
flows and heat transfer in a horizontal concentric
annulus. However, no investigation of the instability
of two-dimensional mixed convective flows leading to
three-dimensional flows has been carried out. Very
recently, the present authors [15] examined the linear
stability of the two-dimensional natural convection of
air (Pr=20.71) in a horizontal annulus of medium-
sized gap (0.5 <7 < 0.8333) against three-dimen-
sional disturbances and obtained the critical Rayleigh
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NOMENCLATURE
b buoyancy force y ratio of buoyancy to centrifugal force,
Cg, Cy, Cr  critical stability curves Gr/Re?
g gravitational acceleration n ratio of radii, R/R,
Gr  Grashof number, gf(T;— T,)L*/v* <] temperature for basic flow
k dimensionless axial wave number 0 temperature
k unit vector in axial direction A axial wavelength
L gap width of annulus, R,— R, v kinematic viscosity
Pr Prandtl number, v/x ¢ azimuthal coordinate
0 representative variable for basic flow ¥ stream function for basic flow
q representative variable for disturbance ] vector potential, ¥ = (,, ¥4, ¥.)
real part of complex number Q vorticity for basic flow
Re rotational Reynolds number, QR,L/v (7] vorticity, o = (@,, ®,, @)
R, R, radii of the inner and outer cylinders, Q angular velocity of inner cylinder.
respectively
¥ dimensionless radial coordinate .
. Subscripts

s complex growth rate, s = s, +1s; i

. . . c critical value
t dimensionless time . . . .
v characteristic velocity, RQ, 1,0 1nr(1;rland. outer (l:yhr:iders., 1respectlvely
A" velocity for basic flow, V = (V,, V,;,0) r.¢,z radia : azimuthal and axia
v velocity, v = (v, 04, 0.) coord%nates. .

. . e . s,p two-dimensional steady basic flow and
z dimensionless axial coordinate. . .

perturbation, respectively.
Greek symbols

o thermal diffusivity Superscript
B thermal expansion coefficient * complex conjugate.

numbers above which the basic flow is unstable. It
was suggested that the instability is mainly caused by
the buoyancy effects. It was found that the natural
convective flow is stable for n < 0.51.

The present paper considers the linear stability of
two-dimensional mixed-convective flow in a hori-
zontal annulus of (moderately) wide gap width
(n =0.6 or 0.3846) against three-dimensional dis-
turbances. The inner cylinder is rotating at a constant
angular velocity while the outer cylinder is stationary.
Both inner and outer cylinders are kept isothermal,
the inner cylinder being hotter. The critical Grashof
number as a function of the Reynolds number is
obtained by integrating numerically the linearized dis-
turbance equations under the suitably chosen initial
conditions. The instability mechanism is discussed by
examining the features of the critical disturbances.
The two-dimensional basic mixed-convective flow is
also obtained numericaily. Computations are carried
out in the range of 0 < Gr £ 8500 and 0 < Re £ 170
for a fluid of Prandtl number 0.71 (air).

For n = 0.6 (moderately wide gap annulus), the
natural convection in the horizontal annulus is shown
to be unstable for Gr > 2810 [15]. 1t is found that
effects of rotation stabilise the buoyancy-dominated
mixed convection (y > 0.33) and that the principle of
exchange of stabilities holds. For rotation-dominated
flow (y < 0.16), the critical mode is a stationary three-
dimensional one and the critical Reynolds number

increases with Grashof number. In the range
0.16 < y < 0.33, in which both rotation and buoyancy
effects are important, the most unstable mode is found
to be oscillatory, i.e. the principle of exchange of stab-
ilities is upset by the competition between two desta-
bilizing mechanisms, buoyancy and centrifugal insta-
bilities.

For # = 0.3846 (wide gap annulus), similar insta-
bility phenomena are observed, although the insta-
bility mainly due to buoyancy effects does not occur
in the range investigated (Gr < 8500). For rotation-
dominated flow (y < 0.18) the critical mode is station-
ary;intherange0.18 < y < 0.31 the basic two-dimen-
sional mixed convective flow becomes unstable to an
oscillatory mode; and for y > 0.31 the basic flow is
stable.

2. MATHEMATICAL FORMULATION AND
COMPUTATIONAL METHOD

Laminar mixed-convective flow in an infinite hori-
zontal annulus between two concentric circular cyl-
inders with inner and outer radii R, and R, is
considered. Figure 1 shows the geometrical model and
the cylindrical coordinate system (r, ¢, z). The inner
and outer cylinder surfaces are held at uniform tem-
peratures T; and T, (T; > T,), respectively. The inner
cylinder is rotating counterclockwise at a constant
angular speed ;. Adopting the Boussinesq approxi-
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z
Fig. 1. Flow geometry and coordinates system.

mation and introducing the vector potential ¥ such
that:

V=Vxy, )

the dimensionless governing equations in the vor-
ticity-vector potential formulation [16] are written as:

ow 1 Gr
& +v Vo = (o V)v+ EVZ&H_ EEVXI)’ )

Vi = —o, €)

B gy

T +(v:V)0 = Re Pr V36, 4
where o is the vorticity, v the velocity, b = (@ cos ¢,
—0sin ¢,0) the buoyancy force, and 8 the tempera-
ture. In this formulation, we obtain the solenoidal
velocity field automatically, accordingly the discrete
mass conservation at each time level is satisfied ident-
ically, and explicit appearance of the pressure is
avoided. Equations (2)-(4) have been put into dimen-
sionless form by taking L (= R,—R), V (= RS),
L/V as characteristic length, velocity and time, respec-
tively. Dimensionless temperature 8 is defined by
0=(T-T,)/(T;—T,. The non-dimensional par-
ameters Gr, Re and Pr are defined by :

Gr = gB(T,— T,)L*|v*, (5)
Re = VLJv, (6)
Pr = vja, 0]

where g is the gravitational acceleration, f the thermal
expansion coefficient, o the thermal diffusivity and v
the kinematic viscosity.

The boundary conditions on rigid boundaries are
expressed as [17]:

v,=0.=0
a(n//r)/ar:!//é:‘//z:O atr:risrm
w, =0 w, = —0v,/0r w, = 0v,/or
®
v,=1 and 8=1 at r=r, €))
v,=0 and 0=0 at r=r, (10)

where r, and r, are dimensionless radii of inner and
outer cylinders.

2.1. Two-dimensional basic flow equations

For two-dimensional flow, the above equations (2)—
(4) degenerate into the conventional vorticity—stream
function formulation, by letting the z component of
velocity equal to zero and all the variables be inde-
pendent of z :

= V(r’ ¢’ t) = (Vr’ V¢’O)

o =Qr, ¢,k
¥ =Y, ¢,0k
0=0(, 0,0,

where k denotes the unit vector along z-axis,
The dimensionless governing equations for two-
dimensional basic flow are given as

oQ 0Q oQ
+V, =+ Vy—

FIRr" rog
=%V29—v<%—?sm¢+%c08¢), ()
VY = —Q, (12)
v=2t v=-2, (13
%—(?+V,2—?+V¢%= VO, ()

where y = Gr/Re* denotes the ratic of buoyancy to
centrifugal force.

Boundary conditions on the cylinder surfaces are
written as follows :

2
v
¥-w a--"20 oo at ron,
orr
(15)
oy
¥ =0 Q=—F =0 at r=r,, (16)
s

where ¥, is a constant to be determined by requiring
that the pressure be single-valued in the annulus [18].

2.2. Linear stability formulation

In order to investigate the stability of the two-
dimensional steady flow against three-dimensional
small disturbances, we apply the standard methods of
linear stability theory [19] following the procedures
which Choi and Kim [15] used for the stability analysis
of natural convection in a horizontal annulus.

All the variables of perturbed flow are written as the
sum of the steady basic solution and the disturbances :

q(r, §.2,1) = Qu(r. §) + £lg, (r, . ) exp (ikz)],  (17)

where k is the dimensionless axial wave number.
Inserting expression (17) into equations (2)—(4), sub-
tracting the basic steady parts and discarding O(&?)
and higher order terms, we obtain the following sys-
tem of linear equations for the disturbances (dropping
the subscripts s and p):
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0 i,
w, w, V¢6

ot " or ro¢
_ 0V to ov,
= T 64
1/, o, 2 0wg\ .
+ R—g(V*co,- R Y )+1yk9 sin ¢, (18a)
dwy dwy 0w¢ Vs,
5tV Ve s 6T r
o TP T
1 ) w, 20w\ .
+ Re <V*wq,— 2 + 2 3% +iykfcos ¢, (18b)
ow, 0Q Jw. oQ 0w, — ik,

+V*‘"+U¢;%+V¢

ot +U'E " or ro¢

1, a0 . o0
+R—eV*mz—y<Esm¢+%cos¢), (18¢)
Yy, 20y
Vib,—= __26_(; —,, (19a)
20
Vi%_ﬂﬁ- . ‘;Z — Wy, (19b)
Vilpz = =, (19C)
o, .
v =" ¢—1kx//¢, (20a)
oy,
b= = 2 ik, (20b)
_0py) oy,
T ror _raq,‘)’ (20c)
00 e 00 13[C] 06 1 )
o e e e g Ve tag = Repr VA0
(21)
where
0? 0 1 02
2 _ 2 ) —_ L2
V*_6r2+ra’+r2 (3(}52 K.

The boundary conditions are homogeneous and
given as:

v, =v,=0,=0=0
o(ry)or =y, =¢.=0

w, =0 w, = ~0v,/0r », = dv,/or

at r=r,r,.

(22)

Since the above linearized disturbance equations
are homogeneous and do not depend on ¢ explicitly,
the solution will eventually show the exponential
behaviour in time:

go(r, &, 0) = d(r,d)e* s=s+is; t»1, (23)

where § denotes the most unstable (least stable) mode
of the eigenvalue problem resulting from the normal
mode analysis of equations (18a)-(21). If s, > 0 (or
s5; < 0) at neutral stability (s, = 0), the critical mode
propagates in the negative (or positive) z-direction. It
can be easily shown that if (v,, Vg Uy W, Yy, l/lz, W,y Wy,
w,0) = (@, 0, U, l//,, l//¢,, (//-, @,, Dy, O, ,0) exp (s?)
is a solution of the linearized disturbance equations
(18a)—(21) satisfying boundary conditions (22), then
(Ur’ Ud)a lpr’ lpd)’ l//"5 Wy, qus CU.,, 0) (Ur’ Ud)s _U*
-y —W, % —of —ak, o %) exp (s*1) is also a
solutlon Here, quantities with tilde are complex-
valued functions of r and ¢, and the complex con-
Jugate is denoted by the asterisk notation. This implies
that when the critical disturbances are time-dependent
(s; # 0) there is no preferred propagation direction.
Also, standing waves may exist. In the numerical
experiments, it has been found that the disturbances
consist of both components moving in + z-direction
and in —z-direction, when the critical mode is time-
dependent.

2.3. Computational procedures

The basic flow and its stability are determined using
the same numerical algorithm as in Choi and Kim
[15]. For details, refer to ref. [15] and the references
cited therein.

In the boundary conditions (15) for the basic flow,
the constant W, cannot be given beforehand, and is
determined from the condition of the single-valued-
ness of pressure on the wall [18]. The basic flow is
assumed to reach a steady state when the difference
between the results of consecutive time steps becomes
less than 107 at every mesh point. In the whole range
of parameters investigated (Gr < 8500, Re < 170), we
were able to obtain the basic flow solutions which
satisfy the steady-state criterion.

The linearized disturbance equations (18a)—(21) are
integrated until the asymptotic exponential behaviour
is established. Several complex-valued initial con-
ditions which satisfy the no-slip and isothermal con-
ditions on the cylinder walls are chosen. Final results
are independent of the initial conditions. For a given
axial wave number k& and Grashof number Gr, the
growth rate s, and oscillating frequency s, are deter-
mined from the time history of dependent variables
which are, in general, complex-valued at several points
in the domain. It is noticeable that both growth rate
and oscillating frequency approach specific values
after a sufficiently long time regardless of choice of
the location (Fig. 2). As discussed in the previous
subsection, the present algorithm can give only the
magnitude of 5. The transition Grashof number at
which the growth rate s, becomes zero is found by
the method of false position. Usually four or five
iterations are needed to obtain a transition Grashof
number with the accuracy of at least three significant
digits.

Approximate values of the critical Grashof number
Gr. and the critical wave number £, for a given Reyn-
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Fig. 2. Time history of s, and s; of 8 for n =0.6:

(@) Gr = 3620, Re =20, k = 3.40, 5, = 1.84x 1073,

5;=0.0; (b) Gr = 5845, Re = 100, k = 3.77, 5, = 5.22x 107%, 5; = 0.0; (¢) Gr = 3239, Re = 100, k = 2.86,

se=—215%x1072 5 =0.108; (d) Gr = 5380, Re = 140, k = 3.55, 5, =

Table 1. Grid dependency test

—4.00x1073, 5 = 0.283.

Table 2. Comparison of critical Reynolds numbers of
Taylor—Couette flow with inner rotating and outer stationary

Gap ratio Grid (r, ¢) Re, cylinders
=3 20 x 64 2511.7 Re, Re,

(k= 3.05) 20x 128 2523.7 n k (present method) [20, 21]
30 x 64 2546.9
30 % 128 2558.6 0.75 3.135 85.30 85.78
40 x 64 2559.5 0.6 3.150 71.39 71.72
40 x< 128 2571.1 0.5 3.165 68.00 68.19
50 x 128 2576.8 0.4 3.184 68.00 68.30
50 x 256 2579.7

g=125 30%32 531.94

(k=3.37) 30 x 64 491.14
40 x 64 483.56
40x 128 483.89

olds number are determined from the minimum of the
quadratic polynomial interpolation constructed from
three pairs of wave number and transition Grashof
number. The neutrai stability curves in the plane of
(Re’, Gr) and the corresponding critical wave number
curves have been explored in two ways, either by fixing
the Reynolds number and changing Grashof numbers,
or by fixing the Grashof number and changing Reyn-
olds numbers, and the results were essentially the
same. The curves are traced starting from the two
points, the points of natural convection (Re = 0) and
the isothermal Taylor—Couette flow (Gr = 0).

At each time level the unsteady calculation has been
completely iterated to convergence, and sufficiently
small time steps (5x 1073 < Ar < 2x107?) are used
to produce time-accurate solutions. Calculations of
both the basic flow and disturbance equations are
based on the same grid system. Although the optimal
grid system may depend on Gr, Re, 6 and k, a uniform
(40 x 128)(r, ¢) mesh is found to be adequate for
n =0.6 and (40x64) for n = 0.3846 from the grid
dependency tests, the results of which are listed in

Table 1. The computations were performed on a
CRAY-2S supercomputer. Determination of a critical
Grashof number (or Reynolds number) for a given
radius ratio required a total CPU time of about 1 h.

3. COMPUTATIONAL RESULTS AND
DISCUSSION

Computations were performed for two radius ratios
(n = 0.6 and 0.3846) when the inner cylinder is kept
hotter. The inner cylinder rotates counterclockwise at
a constant angular velocity and the outer cylinder is
at rest. It has been found [15] that in the absence of
the rotation the two-dimensional natural convection
is unstable with respect to a three-dimensional dis-
turbance for # = 0.6 and stable for n = 0.3846. For
n = 0.3846 (a wide gap annulus), some results of two-
dimensional [12] and three-dimensional [14] com-
putations have been reported.

To test the accuracy and reliability of the present
algorithm, we applied the procedures to the stability
problem of Taylor—Couette flow. Table 2 compares
the critical Reynolds numbers computed by the
present algorithm with those of Walowit er al. [20]
and Takhar et al. [21]. The results are in good agree-
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Fig. 3. Neutral stability curves for n = 0.6: (a) Re = 20; (b) Re =74; (c) Re =90; (d) Re = 100; (e)
Re = 140. S and U indicate the stable and unstable regions, respectively.

ment. We have used the values of the axial wave num-
bers k presented in the references.

The computational procedures adopted in the
present study can isolate only the most unstable (least
stable) mode and require a large amount of time when
two or more modes with nearly the same growth rate
and different frequencies compete.

3.1. Neutral stability curves

We depict typical neutral stability curves for differ-
ent values of Re for a moderately wide gap annulus
(n = 0.6). Figure 3(a) shows the neutral stability
curves of Gr vs k at Re = 20. The critical Grashof
number Gr. is 3558.4 and the critical wave number k,
is 3.443. The most unstable mode is stationary. Figure
4(a) displays the stream function and temperature
distribution for the basic flow and distributions of the
axial velocity and temperature disturbances. As seen
in the figure, the disturbances are localized in a narrow
region of upper-left part of the annulus where unstable
density stratification of the basic flow is most pro-
nounced. This implies that the instability is mainly
caused by the buoyancy effects. This type of dis-
turbances is designated by ‘buoyancy-dominated’
mode. As the Reynolds number decreases, the critical
Grashof number decreases linearly towards 2810, the
critical Grashof number for the natural convection
[15]. The tendency that the increase of rotation post-
pones the instability due to buoyancy effects may be
explained by considering that the peak value of local
heat transfer rate (hence, the maximum adverse tem-
perature gradient) decreases with increasing the
rotational Reynolds number [12].

When the Reynolds number is increased above a
critical value Re, ~ 71.4, which is the critical Reynolds
number for the isothermal Taylor—Couette flow,
a second branch appears. Figure 3(b) illustrates the
neutral stability curves consisting of two branches at
Re = 74. The basic flow is unstable for Gr < Gr,
(~439) or Gr > Gr, (~5143). The multiple-valued-
ness of the critical Grashof number would imply the
restabilization of the two-dimensional mixed con-
vection with the increase of Gr. At a sufficiently low
Grashof number (Gr < Gr,), instability to a three-
dimensional disturbance is encountered first. Increas-
ing Gr above Gr,, the two-dimensional basic flow
would be restabilized and this flow will experience a
second instability to a three-dimensional disturbance
at a still higher Grashof number Gr,. Neutral dis-
turbances associated with the upper branch are of the
same character as those associated with the neutral
curve at Re = 20 [Fig. 3(a)}], although the region of
energetic disturbances is somewhat widened. On the
other hand, stationary neutral disturbances associated
with the lower branch, which are depicted in Fig.
4(b), are of entirely different character. Expanding the
disturbance, say 6(r, ¢), into Fourier series :

0(r,d) = 6,(n+ i {0%(r) cos np + 85 (r) sinng},

we find only the modes n = 0 and n = 1 are dominant
and other modes are negligible. The neutral dis-
turbances associated with the lower branch have a
restricted number of significant non-axisymmetric
modes (usually, n < 2). This type of disturbance will
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Fig. 4. Flow and temperature patterns for basic flows and disturbances fory = 0.6: (a) Gr = 3620, Re = 20,
k=3.40;(b) Gr =444, Re = 74, k = 3.22.

be designated as ‘rotation-dominated’ mode. The
critical Reynolds number for rotation-dominated
mode decreases linearly towards 71.4 as Gr decreases.
It is interesting to note that the most unstable mode
of the basic two-dimensional mixed-convective flow is
always three-dimerisional, albeit that the effects of
buoyancy on the basic flow are graphically invisible
[Fig. 4(b)]. Numerical computation shows that the
amplitude of the n = 1 spiral mode of rotation-domi-
nated disturbance is as large as about one-tenth of
that of axisymmetric mode (n = 0) even at Gr = 10.
Figure 3(c) plots the neutral stability curves at
Re = 90. The flow is unstable for Gr < Gr, (~1191),
Gr, (=~1390) < Gr < Gry (~2701) or Gr> Gr,
(=~ 5517). In the figure, in addition to upper and lower
open-loop branches with which buoyancy-dominated
and rotation-dominated modes are associated, respec-
tively, a closed-loop branch appears. The neutral dis-
turbances associated with the closed-loop branch are
oscillatory. In Fig. 5, the time-dependent neutral tem-
perature disturbance is shown at several instants dur-
ing a period of oscillation. The region in which intense
disturbances are observed is rather wide and swings
forwards and backwards in the upper part of the annu-
lus. We designate this type of disturbance as ‘mixed-
convective’ mode. The closed-loop branch inside
which the flow is unstable degenerates into a point at
Re=718 (Gr= 1549,k =2947) and minimum
value of Gr of ths closed-loop coincides with the
maximum value of Gr of the lower open-loop at
Re =93 (Gr = 1404). As the Reynolds number is
increased further, the closed-loop branch and the
lower open-loop branch coalesce, leading to a lower
open-loop branch [Fig. 3(d)]. The neutral modes
associated with this branch consist of the oscillating
mixed-convective mode for 1.72 < k < 4.85 and the

rotation-dominated mode for k£ < 1.72 or k > 4.85.
Still increasing Re, the critical modes associated
with the lower open-loop branch become solely oscil-
latory [Fig. 3(e)] in the range of k investigated
(12 <k <6.0). With the increase of Re, the
maximum value of the Grashof number (Gr;) of the
lower branch approaches the minimum Grashof num-
ber (Gr,) of the upper branch, and, at Re ~ 168, Gr,
and Gr, coincide (Gr, = Gr, ~ 8084.5).

For the wide gap annulus (7 = 0.3846), neutral
stability curves show the same features as those for
n = 0.6, except that the upper branches with which
buoyancy-dominated modes are associated are
absent. For Re < 68.4, the basic two-dimensional
mixed-convective flow is stable ; for 68.4 < Re < 82.1,
an open-loop branch below which the flow is unstable
appears; for 82.1 < Re <98, a closed-loop branch
inside which the flow is unstable appears; and, for
Re > 98, the closed-loop branch and the lower open-
loop branch coalesce. Figure 6 depicts the neutral
stability curves at Re = 90.

3.2. Critical stability results

Figure 7 displays the critical stability diagrams for
n = 0.6. In Fig. 7(a), the critical values of the Grashof
number are plotted as a function of Re’. The stable
regime is bounded by three marginal curves, des-
ignated by Cy, Cy and Cyg, along which the critical
modes are identifiable as buoyancy-dominated,
mixed-convective and rotation-dominated modes,
respectively. Along Cy (rotation-dominated stability
boundary) the critical Reynolds number for Gr > 0
(mixed convection) is larger than that for Gr = 0 (iso-
thermal Taylor—Couette flow) and increases mon-
otonically with Gr. It can be, thus, concluded that the
free convection in the horizontal annulus delays the
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Fig. 5. Distributions of disturbance temperature at several instants during a period of oscillation for

=06, Re=90 and Gr=2700: (a) t = t;, (Orins Omax) = (0.00, 3.33); (b) £, +7/8, (—0.43, 4.01); (c)
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0.43); (g) 1, +6T/8, (—2.62,0.77); (h) t,+77T/8, (—0.29, 1.33). T = 2n/s; ~ 59.84. Dotted lines represent
negative disturbance isotherms.
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Fig. 6. Neutral stability curves for # = 0.3846 and Re = 90.
§and Uindicate the stable and unstable regions, respectively.

formation of Taylor vortices, which is in accordance
with the experimental observation [10]. Rotation
effects also stabilize the convective flow, since the criti-
cal Grashof number on buoyancy-dominated stability
boundary (Cg) increases with the Reynolds number.
On the curves Cy and Cy the critical disturbances are
stationary (s; = 0), whereas on Cy the critical states
are time-dependent (s; # 0). At the point 4 = (932,
1404), the stationary rotation-dominated branch Cy
and the oscillatory mixed-convective branch Cy, inter-

sect and the point B ~ (1687, 8084.5) represents the
intersection of the stationary buoyancy-dominated
branch Cy with Cy. At these points stationary and
oscillatory states may coexist. Bifurcation phenomena
for which the most unstable mode switches from a
stationary mode to a time-dependent mode are not
uncommon, when two or more effects characterize
the stability of the flow: to cite a few, Taylor-Dean
problem [22], rotating curved channel flow [23] and
electrohydrodynamic thermal instability flow [24], etc.

Figure 7(b) shows the critical axial wave number k,
as a function of Re”. For rotation-dominated modes,
instability wave number k. (wavelength 1.) increases
(decreases) gradually from k. ~ 3.145 (4, ~ 2.0) for
isothermal Taylor vortex flow to k. ~ 4.3(4, ~ 1.5) as
the buoyancy effect increases. On the other hand, for
heated rotating vertical annulus, the opposite trend
has been observed [5] : wavelengths of successive heli-
cal modes grow continuously and then suddenly
shrink when another spiral mode of higher azimuthal
wave number evolves. For buoyancy-dominated
modes, critical axial wave numbers rapidly approach
a nearly constant value of k. ~ 3.77 as Re? increases.
At points 4 and B, the critical wave number changes
discontinuously.

In Fig. 7(c), the frequency s; of the critical neutral
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Fig. 7. Critical stability diagrams as functions of Re* for
n = 0.6: (a) critical stability curves; (b) critical wave num-
bers; (c) oscillation frequencies. Cy denotes the rotation-
dominated branch, Cj the buoyancy-dominated branch and
Cy the mixed-convective branch. Points 4 and B represent
the bifurcation points at which stationary and oscillatory
states may coexist and C the point at which two different
oscillatory states coexist.

disturbance associated with the curve Cy is plotted as
a function of Re®. [t is observed that there exists a
bifurcation point C =~ (1152, 3960) at which two time-
dependent modes of different frequencies coexist. At
the bifurcation point C, the wave number of the criti-
cal mode seems to change discontinuously. Since dis-
continuity is very weak, however, the evaluation of
the precise value of the jump by the present method is
extremely difficult and not attempted. Figure 8 shows
temporal variations of disturbance temperatures at
points near the bifurcation point C. As shown in the
figure, the beat of two modes continues for a long time
before the predominant mode settles down ultimately.

Figure 9 displays the stability boundaries in
(Ré*, Gr) plane and the corresponding critical axial
wave number and oscillating frequency as functions
of Re* for the radius ratio of n = 0.3846. The overall
features of these curves closely resemble those of Fig.
7, except that the critical curve for buoyancy-domi-
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Fig. 8. Time history of disturbance temperatures at points

near the bifurcation point C: (a) Gr = 3732, Re =110,

k=3.15; (b) Gr=4268, Re =120, k = 3.40. Estimated

oscillation frequencies are s; = 0.117 for (a) and s, = 0.295
for (b).

nated modes is absent. The absence of the buoyancy-
dominated critical modes is not unexpected since the
two-dimensional natural convective flow is predicted
to be stable with respect to three-dimensional dis-
turbances when the gap is wide [15]. At point
A~ (982, 1790), the stationary rotation-dominated
critical mode and the oscillatory mixed-convective
mode coexist, and point C =~ (1132, 3559) represents
the bifurcation point at which two different time-
dependent modes coexist. An appreciable jump in
wave number as well as the frequency of the critical
disturbances is observed at C. Yang and Farouk [14]}
have conducted the three-dimensional numerical com-
putations for the mixed convection in an annulus of
finite axial length (axial length/gap width = 6) for
n = 0.3846. They presented the results that at a fixed
Reynolds number (Re? = 10000), which is sufficient
to trigger the Taylor vortex in an isothermal annulus,
the flow is essentially two-dimensional for Gr = 6944,
whereas the Nusselt number distributions for
Gr = 138 and 1388 show a wave-like variation in the
axial direction, suggesting the presence of Taylor cells.
They concluded that the critical Reynolds number for
the onset of the Taylor cells would be higher than 100
at Gr = 6944. Calculation for a fixed Grashof number
(Gr = 2777) with varying Reynolds number suggested
that the onset of rotational instability occurs some-
where between Re = 80 and 130, but determination
of the precise value of the critical Reynolds number
was not attempted. The present analysis gives Re, =
153 at Gr = 6944 and Re. = 96 at Gr = 2777, indi-
cating that the results of the present linear stability
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Fig. 9. Critical stability diagrams as functions of Re’ for

n = 0.3846: (a) critical stability curves—at points indicated

by open circles computational results by Yang and Farouk

[14] give the two-dimensional flow and at points indicated

by filled circles the flow is three-dimensional; (b) critical
wave numbers; (c) oscillation frequencies.

analysis and the three-dimensional numerical analysis,
taking into account full non-linear effects, are not
inconsistent.

From Figs. 7(a) and 9(a), it is inferred that the
characteristics of the linear instability of the two-
dimensional mixed convection in a (moderately) wide
horizontal annulus can be approximately delineated
by the ratio y = Gr/Ré* for fixed values of the radius
ratio #. In a moderately wide annulus (y = 0.6), the
mode type of the most unstable disturbances changes
from the stationary rotation-dominated mode
(y < 0.16) through the oscillatory mixed-convective
mode (0.16 < y < 0.33) to the stationary buoyancy-
dominated mode (y > 0.33) as y increases. In a wide
annulus (n = 0.3846), the onset of hydrodynamic
instabilities is caused by the stationary rotation-domi-
nated mode for y < 0.18 and by the oscillatory mixed-
convective mode for 0.18 < y < 0.31. At higher values
of y, two-dimensional basic flow is stable in the range
of parameters investigated (Re < 170, Gr < 8500).
The results of two-dimensional computations
reported by Fusegi et al. [12] may be legitimated, thus,
in that the present analysis suggests that the two-

dimensional mixed convections in the parameter range
(y > 1) they investigated may certainly be stable to
three-dimensional disturbances. On the other hand, a
part of the results reported by Lee [11, 13] might be
experimentally not observable, since his study includes
parameter combinations for which two-dimensional
flows are unstable to three-dimensional disturbances.

4. CONCLUSIONS

The three-dimensional linear stability of mixed-
convective flow in a horizontal concentric annulus
with a heated rotating inner cylinder is studied
numerically for a fluid of Prandtl number 0.71 (air).
Computations are carried out for a moderately wide
annulus (y=0.6) and for a wide annulus
(n = 0.3846).

The main results are displayed in Figs. 7 and 9. The
natural convection is found to postpone the formation
of Taylor vortices, when the effect of rotation domi-
nates the effect of buoyancy. This tendency is in agree-
ment with experimental observation [10]. When the
effect of buoyant forces predominates over the effect
of centrifugal forces, the rotation of the inner cylinder
stabilizes the natural convective flow in the horizontal
annulus. Since the two-dimensional steady natural
convection in a wide annulus ( < 0.51) is stable to
small three-dimensional disturbances [15], it is not
unexpected that the basic flow in the annulus of
n = 0.3846 is stable when the Grashof number is large
enough compared with the Reynolds number
(Gr/Ré* > 0.31). When both the buoyancy effect and
the rotation effect are important, the basic flow
becomes unstable with respect to oscillatory dis-
turbances.

Stability boundaries are composed of stationary
and oscillatory branches. At intersection points of
the branches, the present linear analysis predicts two
distinct critical modes. However, to clarify which
modes can be observed in the vicinity of the inter-
section points, the analysis of non-linear interactions
is needed [24, 25].

No experimental study on the stability of the mixed
convection in a horizontal annulus has been reported
so far, in contrast with the stability of the circular
Couette flow in a heated vertical annulus. It is hoped
that the present work will stimulate experimental
investigations.
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